Verhoeff algorithm
Generate the tables rather than hard coding, They're not all that complex.
my @d = [^10] xx 5;
@d[$_][^5].=rotate($_), @d[$_][5..*].=rotate($_) for 1..4;
push @d: [@d[$_].reverse] for flat 1..4, 0;
my @i = 0,4,3,2,1,5,6,7,8,9;
my %h = flat (0,1,5,8,9,4,2,7,0).rotor(2 =>-1).map({.[0]=>.[1]}), 6=>3, 3=>6;
my @p = [^10],;
@p.push: [@p[*-1].map: {%h{$_}}] for ^7;
sub checksum (Int $int where * ≥ 0, :$verbose = True ) {
my @digits = $int.comb;
say "\nCheckdigit calculation for $int:";
say " i ni p(i, ni) c" if $verbose;
my ($i, $p, $c) = 0 xx 3;
say " $i 0 $p $c" if $verbose;
for @digits.reverse {
++$i;
$p = @p[$i % 8][$_];
$c = @d[$c; $p];
say "{$i.fmt('%2d')} $_ $p $c" if $verbose;
}
say "Checkdigit: {@i[$c]}";
+($int ~ @i[$c]);
}
sub validate (Int $int where * ≥ 0, :$verbose = True) {
my @digits = $int.comb;
say "\nValidation calculation for $int:";
say " i ni p(i, ni) c" if $verbose;
my ($i, $p, $c) = 0 xx 3;
for @digits.reverse {
$p = @p[$i % 8][$_];
$c = @d[$c; $p];
say "{$i.fmt('%2d')} $_ $p $c" if $verbose;
++$i;
}
say "Checkdigit: {'in' if $c}correct";
}
## TESTING
for 236, 12345, 123456789012 -> $int {
my $check = checksum $int, :verbose( $int.chars < 8 );
validate $check, :verbose( $int.chars < 8 );
validate +($check.chop ~ 9), :verbose( $int.chars < 8 );
}Output:
Last updated
Was this helpful?