Van der Corput sequence

First a cheap implementation in base 2, using string operations.

constant VdC = map { :2("0." ~ .base(2).flip) }, ^Inf;
.say for VdC[^16];

Here is a more elaborate version using the polymod built-in integer method:

sub VdC($base = 2) {
    map {
        [+] $_ && .polymod($base xx *) Z/ [\*] $base xx *
    }, ^Inf
}

.say for VdC[^10];

Output:

0
0.5
0.25
0.75
0.125
0.625
0.375
0.875
0.0625
0.5625

Here is a fairly standard imperative version in which we mutate three variables in parallel:

Output:

Here is a functional version that produces the same output:

We first define two sequences, one finite, one infinite. When we zip those sequences together, the finite sequence terminates the loop (which, since a Raku loop returns all its values, is merely another way of writing a map). We then sum with [+], a reduction of the + operator. (We could have in-lined the sequences or used a traditional map operator, but this way seems more readable than the typical FP solution.) The do is necessary to introduce a statement where a term is expected, since Raku distinguishes "sentences" from "noun phrases" as a natural language might.

Last updated

Was this helpful?