Runge-Kutta method
sub runge-kutta(&yp) {
return -> \t, \y, \δt {
my $a = δt * yp( t, y );
my $b = δt * yp( t + δt/2, y + $a/2 );
my $c = δt * yp( t + δt/2, y + $b/2 );
my $d = δt * yp( t + δt, y + $c );
($a + 2*($b + $c) + $d) / 6;
}
}
constant δt = .1;
my &δy = runge-kutta { $^t * sqrt($^y) };
loop (
my ($t, $y) = (0, 1);
$t <= 10;
($t, $y) »+=« (δt, δy($t, $y, δt))
) {
printf "y(%2d) = %12f ± %e\n", $t, $y, abs($y - ($t**2 + 4)**2 / 16)
if $t %% 1;
}Output:
Last updated
Was this helpful?