Integer long division
It's a built-in.
for 0/1, 1/1, 1/3, 1/7, -83/60, 1/17, 10/13, 3227/555, 5**21/2**63, 1/149, 1/5261 -> $rat {
printf "%35s - Period is %-5s: %s%s\n", $rat.nude.join('/'), .[1].chars, .[0], (.[1].comb Z~ "\c[COMBINING OVERLINE]" xx *).join
given $rat.base-repeating
}
Output:
0/1 - Period is 0 : 0
1/1 - Period is 0 : 1
1/3 - Period is 1 : 0.3̅
1/7 - Period is 6 : 0.1̅4̅2̅8̅5̅7̅
-83/60 - Period is 1 : -1.383̅
1/17 - Period is 16 : 0.0̅5̅8̅8̅2̅3̅5̅2̅9̅4̅1̅1̅7̅6̅4̅7̅
10/13 - Period is 6 : 0.7̅6̅9̅2̅3̅0̅
3227/555 - Period is 3 : 5.81̅4̅4̅
476837158203125/9223372036854775808 - Period is 0 : 0.000051698788284564229679463043254372678347863256931304931640625
1/149 - Period is 148 : 0.0̅0̅6̅7̅1̅1̅4̅0̅9̅3̅9̅5̅9̅7̅3̅1̅5̅4̅3̅6̅2̅4̅1̅6̅1̅0̅7̅3̅8̅2̅5̅5̅0̅3̅3̅5̅5̅7̅0̅4̅6̅9̅7̅9̅8̅6̅5̅7̅7̅1̅8̅1̅2̅0̅8̅0̅5̅3̅6̅9̅1̅2̅7̅5̅1̅6̅7̅7̅8̅5̅2̅3̅4̅8̅9̅9̅3̅2̅8̅8̅5̅9̅0̅6̅0̅4̅0̅2̅6̅8̅4̅5̅6̅3̅7̅5̅8̅3̅8̅9̅2̅6̅1̅7̅4̅4̅9̅6̅6̅4̅4̅2̅9̅5̅3̅0̅2̅0̅1̅3̅4̅2̅2̅8̅1̅8̅7̅9̅1̅9̅4̅6̅3̅0̅8̅7̅2̅4̅8̅3̅2̅2̅1̅4̅7̅6̅5̅1̅
1/5261 - Period is 1052 : 0.0̅0̅0̅1̅9̅0̅0̅7̅7̅9̅3̅1̅9̅5̅2̅1̅0̅0̅3̅6̅1̅1̅4̅8̅0̅7̅0̅7̅0̅8̅9̅9̅0̅6̅8̅6̅1̅8̅1̅3̅3̅4̅3̅4̅7̅0̅8̅2̅3̅0̅3̅7̅4̅4̅5̅3̅5̅2̅5̅9̅4̅5̅6̅3̅7̅7̅1̅1̅4̅6̅1̅6̅9̅9̅2̅9̅6̅7̅1̅1̅6̅5̅1̅7̅7̅7̅2̅2̅8̅6̅6̅3̅7̅5̅2̅1̅3̅8̅3̅7̅6̅7̅3̅4̅4̅6̅1̅1̅2̅9̅0̅6̅2̅9̅1̅5̅7̅9̅5̅4̅7̅6̅1̅4̅5̅2̅1̅9̅5̅4̅0̅0̅1̅1̅4̅0̅4̅6̅7̅5̅9̅1̅7̅1̅2̅6̅0̅2̅1̅6̅6̅8̅8̅8̅4̅2̅4̅2̅5̅3̅9̅4̅4̅1̅1̅7̅0̅8̅8̅0̅0̅6̅0̅8̅2̅4̅9̅3̅8̅2̅2̅4̅6̅7̅2̅1̅1̅5̅5̅6̅7̅3̅8̅2̅6̅2̅6̅8̅7̅7̅0̅1̅9̅5̅7̅8̅0̅2̅6̅9̅9̅1̅0̅6̅6̅3̅3̅7̅1̅9̅8̅2̅5̅1̅2̅8̅3̅0̅2̅6̅0̅4̅0̅6̅7̅6̅6̅7̅7̅4̅3̅7̅7̅4̅9̅4̅7̅7̅2̅8̅5̅6̅8̅7̅1̅3̅1̅7̅2̅4̅0̅0̅6̅8̅4̅2̅8̅0̅5̅5̅5̅0̅2̅7̅5̅6̅1̅3̅0̅0̅1̅3̅3̅0̅5̅4̅5̅5̅2̅3̅6̅6̅4̅7̅0̅2̅5̅2̅8̅0̅3̅6̅4̅9̅4̅9̅6̅2̅9̅3̅4̅8̅0̅3̅2̅6̅9̅3̅4̅0̅4̅2̅9̅5̅7̅6̅1̅2̅6̅2̅1̅1̅7̅4̅6̅8̅1̅6̅1̅9̅4̅6̅3̅9̅8̅0̅2̅3̅1̅8̅9̅5̅0̅7̅6̅9̅8̅1̅5̅6̅2̅4̅4̅0̅6̅0̅0̅6̅4̅6̅2̅6̅4̅9̅6̅8̅6̅3̅7̅1̅4̅1̅2̅2̅7̅9̅0̅3̅4̅4̅0̅4̅1̅0̅5̅6̅8̅3̅3̅3̅0̅1̅6̅5̅3̅6̅7̅8̅0̅0̅7̅9̅8̅3̅2̅7̅3̅1̅4̅1̅9̅8̅8̅2̅1̅5̅1̅6̅8̅2̅1̅8̅9̅6̅9̅7̅7̅7̅6̅0̅8̅8̅1̅9̅6̅1̅6̅0̅4̅2̅5̅7̅7̅4̅5̅6̅7̅5̅7̅2̅7̅0̅4̅8̅0̅8̅9̅7̅1̅6̅7̅8̅3̅8̅8̅1̅3̅9̅1̅3̅7̅0̅4̅6̅1̅8̅8̅9̅3̅7̅4̅6̅4̅3̅6̅0̅3̅8̅7̅7̅5̅8̅9̅8̅1̅1̅8̅2̅2̅8̅4̅7̅3̅6̅7̅4̅2̅0̅6̅4̅2̅4̅6̅3̅4̅0̅9̅9̅9̅8̅0̅9̅9̅2̅2̅0̅6̅8̅0̅4̅7̅8̅9̅9̅6̅3̅8̅8̅5̅1̅9̅2̅9̅2̅9̅1̅0̅0̅9̅3̅1̅3̅8̅1̅8̅6̅6̅5̅6̅5̅2̅9̅1̅7̅6̅9̅6̅2̅5̅5̅4̅6̅4̅7̅4̅0̅5̅4̅3̅6̅2̅2̅8̅8̅5̅3̅8̅3̅0̅0̅7̅0̅3̅2̅8̅8̅3̅4̅8̅2̅2̅2̅7̅7̅1̅3̅3̅6̅2̅4̅7̅8̅6̅1̅6̅2̅3̅2̅6̅5̅5̅3̅8̅8̅7̅0̅9̅3̅7̅0̅8̅4̅2̅0̅4̅5̅2̅3̅8̅5̅4̅7̅8̅0̅4̅5̅9̅9̅8̅8̅5̅9̅5̅3̅2̅4̅0̅8̅2̅8̅7̅3̅9̅7̅8̅3̅3̅1̅1̅1̅5̅7̅5̅7̅4̅6̅0̅5̅5̅8̅8̅2̅9̅1̅1̅9̅9̅3̅9̅1̅7̅5̅0̅6̅1̅7̅7̅5̅3̅2̅7̅8̅8̅4̅4̅3̅2̅6̅1̅7̅3̅7̅3̅1̅2̅2̅9̅8̅0̅4̅2̅1̅9̅7̅3̅0̅0̅8̅9̅3̅3̅6̅6̅2̅8̅0̅1̅7̅4̅8̅7̅1̅6̅9̅7̅3̅9̅5̅9̅3̅2̅3̅3̅2̅2̅5̅6̅2̅2̅5̅0̅5̅2̅2̅7̅1̅4̅3̅1̅2̅8̅6̅8̅2̅7̅5̅9̅9̅3̅1̅5̅7̅1̅9̅4̅4̅4̅9̅7̅2̅4̅3̅8̅6̅9̅9̅8̅6̅6̅9̅4̅5̅4̅4̅7̅6̅3̅3̅5̅2̅9̅7̅4̅7̅1̅9̅6̅3̅5̅0̅5̅0̅3̅7̅0̅6̅5̅1̅9̅6̅7̅3̅0̅6̅5̅9̅5̅7̅0̅4̅2̅3̅8̅7̅3̅7̅8̅8̅2̅5̅3̅1̅8̅3̅8̅0̅5̅3̅6̅0̅1̅9̅7̅6̅8̅1̅0̅4̅9̅2̅3̅0̅1̅8̅4̅3̅7̅5̅5̅9̅3̅9̅9̅3̅5̅3̅7̅3̅5̅0̅3̅1̅3̅6̅2̅8̅5̅8̅7̅7̅2̅0̅9̅6̅5̅5̅9̅5̅8̅9̅4̅3̅1̅6̅6̅6̅9̅8̅3̅4̅6̅3̅2̅1̅9̅9̅2̅0̅1̅6̅7̅2̅6̅8̅5̅8̅0̅1̅1̅7̅8̅4̅8̅3̅1̅7̅8̅1̅0̅3̅0̅2̅2̅2̅3̅9̅1̅1̅8̅0̅3̅8̅3̅9̅5̅7̅4̅2̅2̅5̅4̅3̅2̅4̅2̅7̅2̅9̅5̅1̅9̅1̅0̅2̅8̅3̅2̅1̅6̅1̅1̅8̅6̅0̅8̅6̅2̅9̅5̅3̅8̅1̅1̅0̅6̅2̅5̅3̅5̅6̅3̅9̅6̅1̅2̅2̅4̅1̅0̅1̅8̅8̅1̅7̅7̅1̅5̅2̅6̅3̅2̅5̅7̅9̅3̅5̅7̅5̅3̅6̅5̅9̅
Last updated