Find the intersection of two lines
sub intersection (Real $ax, Real $ay, Real $bx, Real $by,
Real $cx, Real $cy, Real $dx, Real $dy ) {
sub term:<|AB|> { determinate($ax, $ay, $bx, $by) }
sub term:<|CD|> { determinate($cx, $cy, $dx, $dy) }
my $ΔxAB = $ax - $bx;
my $ΔyAB = $ay - $by;
my $ΔxCD = $cx - $dx;
my $ΔyCD = $cy - $dy;
my $x-numerator = determinate( |AB|, $ΔxAB, |CD|, $ΔxCD );
my $y-numerator = determinate( |AB|, $ΔyAB, |CD|, $ΔyCD );
my $denominator = determinate( $ΔxAB, $ΔyAB, $ΔxCD, $ΔyCD );
return 'Lines are parallel' if $denominator == 0;
($x-numerator/$denominator, $y-numerator/$denominator);
}
sub determinate ( Real $a, Real $b, Real $c, Real $d ) { $a * $d - $b * $c }
# TESTING
say 'Intersection point: ', intersection( 4,0, 6,10, 0,3, 10,7 );
say 'Intersection point: ', intersection( 4,0, 6,10, 0,3, 10,7.1 );
say 'Intersection point: ', intersection( 0,0, 1,1, 1,2, 4,5 );
Output:
Intersection point: (5 5)
Intersection point: (5.010893 5.054466)
Intersection point: Lines are parallel
Using a geometric algebra library
See task geometric algebra.
use Clifford;
# We pick a projective basis,
# and we compute its pseudo-scalar and its square.
my ($i, $j, $k) = @e;
my $I = $i∧$j∧$k;
my $I2 = ($I**2).narrow;
# Homogeneous coordinates of point (X,Y) are (X,Y,1)
my $A = 4*$i + 0*$j + $k;
my $B = 6*$i + 10*$j + $k;
my $C = 0*$i + 3*$j + $k;
my $D = 10*$i + 7*$j + $k;
# We form lines by joining points
my $AB = $A∧$B;
my $CD = $C∧$D;
# The intersection is their meet, which we
# compute by using the De Morgan law
my $ab = $AB*$I/$I2;
my $cd = $CD*$I/$I2;
my $M = ($ab ∧ $cd)*$I/$I2;
# Affine coordinates are (X/Z, Y/Z)
say $M/($M·$k) X· $i, $j;
Output:
(5 5)
Last updated