Ramer-Douglas-Peucker line simplification
sub norm (*@list) { @list»².sum.sqrt }
sub perpendicular-distance (@start, @end where @end !eqv @start, @point) {
return 0 if @point eqv any(@start, @end);
my ( $Δx, $Δy ) = @end «-» @start;
my ($Δpx, $Δpy) = @point «-» @start;
($Δx, $Δy) «/=» norm $Δx, $Δy;
norm ($Δpx, $Δpy) «-» ($Δx, $Δy) «*» ($Δx*$Δpx + $Δy*$Δpy);
}
sub Ramer-Douglas-Peucker(@points where * > 1, \ε = 1) {
return @points if @points == 2;
my @d = (^@points).map: { perpendicular-distance |@points[0, *-1, $_] };
my ($index, $dmax) = @d.first: @d.max, :kv;
return flat
Ramer-Douglas-Peucker( @points[0..$index], ε )[^(*-1)],
Ramer-Douglas-Peucker( @points[$index..*], ε )
if $dmax > ε;
@points[0, *-1];
}
# TESTING
say Ramer-Douglas-Peucker(
[(0,0),(1,0.1),(2,-0.1),(3,5),(4,6),(5,7),(6,8.1),(7,9),(8,9),(9,9)]
);
Output:
((0 0) (2 -0.1) (3 5) (7 9) (9 9))
Last updated