Welch's t-test

Integration using Simpson's Rule

Perhaps "inspired by C example" may be more accurate. Gamma subroutine from Gamma function task.

sub Γ(\z) {
    constant g = 9;
    z < .5 ?? π / sin(π × z) / Γ(1 - z) !!
    τ.sqrt × (z + g - 1/2)**(z - 1/2) ×
    exp(-(z + g - 1/2)) ×
    [+] <
        1.000000000000000174663
     5716.400188274341379136
   -14815.30426768413909044
    14291.49277657478554025
    -6348.160217641458813289
     1301.608286058321874105
     -108.1767053514369634679
        2.605696505611755827729
       -0.7423452510201416151527e-2
        0.5384136432509564062961e-7
       -0.4023533141268236372067e-8
    > Z× 1, |map 1/(z + *), 0..*
}

sub p-value (@A, @B) {
    return 1 if @A <= 1 or @B <= 1;

    my $a-mean = @A.sum / @A;
    my $b-mean = @B.sum / @B;
    my $a-variance = @A.map( { ($a-mean - $_)² } ).sum / (@A - 1);
    my $b-variance = @B.map( { ($b-mean - $_)² } ).sum / (@B - 1);
    return 1 unless $a-variance && $b-variance;

    my \Welchs-𝒕-statistic = ($a-mean - $b-mean)/($a-variance/@A + $b-variance/@B).sqrt;

    my $DoF = ($a-variance / @A + $b-variance / @B)² /
              (($a-variance² / (@A³ - @A²)) + ($b-variance² / (@B³ - @B²)));

    my $sa = $DoF / 2 - 1;
    my $x = $DoF / (Welchs-𝒕-statistic² + $DoF);
    my $N = 65355;
    my $h = $x / $N;
    my ( $sum1, $sum2 );

    for ^$N »×» $h -> $i {
        $sum1 += (($i + $h / 2) ** $sa) / (1 - ($i + $h / 2)).sqrt;
        $sum2 +=   $i           ** $sa  / (1 -  $i).sqrt;
    }

    (($h / 6) × ( $x ** $sa / (1 - $x).sqrt + 4 × $sum1 + 2 × $sum2)) /
     ( Γ($sa + 1) × π.sqrt / Γ($sa + 1.5) );
}

# Testing
for (
  [<27.5 21.0 19.0 23.6 17.0 17.9 16.9 20.1 21.9 22.6 23.1 19.6 19.0 21.7 21.4>],
  [<27.1 22.0 20.8 23.4 23.4 23.5 25.8 22.0 24.8 20.2 21.9 22.1 22.9 20.5 24.4>],

  [<17.2 20.9 22.6 18.1 21.7 21.4 23.5 24.2 14.7 21.8>],
  [<21.5 22.8 21.0 23.0 21.6 23.6 22.5 20.7 23.4 21.8 20.7 21.7 21.5 22.5 23.6 21.5 22.5 23.5 21.5 21.8>],

  [<19.8 20.4 19.6 17.8 18.5 18.9 18.3 18.9 19.5 22.0>],
  [<28.2 26.6 20.1 23.3 25.2 22.1 17.7 27.6 20.6 13.7 23.2 17.5 20.6 18.0 23.9 21.6 24.3 20.4 24.0 13.2>],

  [<30.02 29.99 30.11 29.97 30.01 29.99>],
  [<29.89 29.93 29.72 29.98 30.02 29.98>],

  [<3.0 4.0 1.0 2.1>],
  [<490.2 340.0 433.9>]
) -> @left, @right { say p-value @left, @right }

Output:

Using Burkhardt's 'incomplete beta'

This uses the Soper reduction formula to evaluate the integral, which converges much more quickly than Simpson's formula.

Output:

Last updated

Was this helpful?