Ramanujan's constant

Iterative calculations

To generate a high-precision value for Ramanujan's constant, code is borrowed from three other Rosettacode tasks (with some modifications) for performing calculations of the value of π, Euler's number, and integer roots. Additional custom routines for exponentiation are used to ensure all computations are done with rationals, specifically FatRats (rational numbers stored with arbitrary size numerator and denominator). The module Rat::Precise makes it simple to display these to a configurable precision.

use Rat::Precise;

# set the degree of precision for calculations
constant D = 54;
constant d = 15;

# two versions of exponentiation where base and exponent are both FatRat
multi infix:<**> (FatRat $base, FatRat $exp where * >= 1 --> FatRat) {
    2 R** $base**($exp/2);
}

multi infix:<**> (FatRat $base, FatRat $exp where * <  1 --> FatRat) {
    constant ε = 10**-D;
    my $low  = 0.FatRat;
    my $high = 1.FatRat;
    my $mid  = $high / 2;
    my $acc  = my $sqr = sqrt($base);

    while (abs($mid - $exp) > ε) {
      $sqr = sqrt($sqr);
      if ($mid <= $exp) { $low  = $mid; $acc ×=   $sqr }
      else              { $high = $mid; $acc ××= 1/$sqr }
      $mid = ($low + $high) / 2;
    }
    $acc.substr(0, D).FatRat;
}

# calculation of π
sub π (--> FatRat) {
    my ($a, $n) = 1, 1;
    my $g = sqrt 1/2.FatRat;
    my $z = .25;
    my $pi;

    for ^d {
        given [ ($a + $g)/2, sqrt $a × $g ] {
            $z -= (.[0] - $a)**2 × $n;
            $n += $n;
            ($a, $g) = @$_;
            $pi = ($a ** 2 / $z).substr: 0, 2 + D;
        }
    }
    $pi.FatRat;
}

multi sqrt(FatRat $r --> FatRat) {
    FatRat.new: sqrt($r.nude[0] × 10**(D×2) div $r.nude[1]), 10**D;
}

# integer roots
multi sqrt(Int $n) {
    my $guess = 10**($n.chars div 2);
    my $iterator = { ( $^x + $n div ($^x) ) div 2 };
    my $endpoint = { $^x == $^y|$^z };
    min ($guess, $iterator … $endpoint)[*-1, *-2];
}

# 'cosmetic' cover to upgrade input to FatRat sqrt
sub prefix:<√> (Int $n) { sqrt($n.FatRat) }

# calculation of 𝑒
sub postfix:<!> (Int $n) { (constant f = 1, |[\×] 1..*)[$n] }
sub 𝑒 (--> FatRat) { sum map { FatRat.new(1,.!) }, ^D }

# inputs, and their difference, formatted decimal-aligned
sub format ($a,$b) {
    sub pad ($s) { ' ' x ((34 - d - 1) - ($s.split(/\./)[0]).chars) }
    my $c = $b.precise(d, :z);
    my $d = ($a-$b).precise(d, :z);
    join "\n",
        (sprintf "%11s {pad($a)}%s\n", 'Int', $a) ~
        (sprintf "%11s {pad($c)}%s\n", 'Heegner', $c) ~
        (sprintf "%11s {pad($d)}%s\n", 'Difference', $d)
}

# override built-in definitions
constant π = &π();
constant 𝑒 = &𝑒();

my $Ramanujan = 𝑒**(π × √163);
say "Ramanujan's constant to 32 decimal places:\nActual:     " ~
    "262537412640768743.99999999999925007259719818568888\n" ~
    "Calculated: ", $Ramanujan.precise(32, :z), "\n";

say "Heegner numbers yielding 'almost' integers";
for 19, 96, 43, 960, 67, 5280, 163, 640320 -> $heegner, $x {
    my $almost = 𝑒**(π × √$heegner);
    my $exact  = $x³ + 744;
    say format($exact, $almost);
}

Output:

Continued fractions

Ramanujan's constant can also be generated to an arbitrary precision using standard continued fraction formulas for each component of the 𝑒**(π*√163) expression. Substantially slower than the first method.

Output:

Last updated

Was this helpful?