Faulhaber's formula
sub bernoulli_number($n) {
return 1/2 if $n == 1;
return 0/1 if $n % 2;
my @A;
for 0..$n -> $m {
@A[$m] = 1 / ($m + 1);
for $m, $m-1 ... 1 -> $j {
@A[$j - 1] = $j * (@A[$j - 1] - @A[$j]);
}
}
return @A[0];
}
sub binomial($n, $k) {
$k == 0 || $n == $k ?? 1 !! binomial($n-1, $k-1) + binomial($n-1, $k);
}
sub faulhaber_s_formula($p) {
my @formula = gather for 0..$p -> $j {
take '('
~ join('/', (binomial($p+1, $j) * bernoulli_number($j)).Rat.nude)
~ ")*n^{$p+1 - $j}";
}
my $formula = join(' + ', @formula.grep({!m{'(0/1)*'}}));
$formula .= subst(rx{ '(1/1)*' }, '', :g);
$formula .= subst(rx{ '^1'» }, '', :g);
"1/{$p+1} * ($formula)";
}
for 0..9 -> $p {
say "f($p) = ", faulhaber_s_formula($p);
}Output:
Last updated
Was this helpful?