A free translation of the OCaml solution. We save half the effort to calculate the nodes by exploiting the (skew-)symmetry of the Legendre Polynomials. The evaluation of Pn(x) is kept linear in n by also passing Pn-1(x) in the recursion.
Note: The calculations of Pn(x) and P'n(x) could be combined to further reduce duplicated effort. We also could cache P'n(x) from the last Newton-Raphson step for the weight calculation.
Copy multi legendre-pair( 1 , $x) { $x, 1 }
multi legendre-pair(Int $n, $x) {
my ($m1, $m2) = legendre-pair($n - 1, $x);
my \u = 1 - 1 / $n;
(1 + u) * $x * $m1 - u * $m2, $m1;
}
multi legendre( 0 , $ ) { 1 }
multi legendre(Int $n, $x) { legendre-pair($n, $x)[0] }
multi legendre-prime( 0 , $ ) { 0 }
multi legendre-prime( 1 , $ ) { 1 }
multi legendre-prime(Int $n, $x) {
my ($m0, $m1) = legendre-pair($n, $x);
($m1 - $x * $m0) * $n / (1 - $x**2);
}
sub approximate-legendre-root (Int $n, Int $k) {
# Approximation due to Francesco Tricomi
my \t = (4*$k - 1) / (4*$n + 2);
(1 - ($n - 1) / (8 * $n**3)) * cos (pi * t);
}
sub newton-raphson (&f, &f-prime, $r is copy, :$eps = 2e-16) {
while abs( my \dr = - f($r) / f-prime($r)) >= $eps {
$r += dr;
}
$r;
}
sub legendre-root (Int $n, Int $k) {
newton-raphson(&legendre.assuming($n), &legendre-prime.assuming($n),
approximate-legendre-root($n, $k));
}
sub weight (Int $n, $r) { 2 / ((1 - $r**2) * legendre-prime($n, $r)**2) }
sub nodes (Int $n) {
flat gather {
take 0 => weight($n, 0) if $n !%% 2;
for 1 .. $n div 2 {
my $r = legendre-root($n, $_);
my $w = weight($n, $r);
take $r => $w, -$r => $w;
}
}
}
sub quadrature (Int $n, &f, $a, $b, :@nodes = nodes($n)) {
sub scale ($x) { ($x * ($b - $a) + $a + $b) / 2 }
($b - $a) / 2 * [+] @nodes. map : { .value * f(scale(.key)) }
}
say "Gauss-Legendre $_.fmt('%2d')-point quadrature ∫₋₃⁺³ exp(x) dx ≈ " ,
quadrature($_, & exp , -3, +3) for flat 5 .. 10, 20;
Copy Gauss-Legendre 5-point quadrature ∫₋₃⁺³ exp(x) dx ≈ 20.0355777183856
Gauss-Legendre 6-point quadrature ∫₋₃⁺³ exp(x) dx ≈ 20.0357469750923
Gauss-Legendre 7-point quadrature ∫₋₃⁺³ exp(x) dx ≈ 20.0357498197266
Gauss-Legendre 8-point quadrature ∫₋₃⁺³ exp(x) dx ≈ 20.0357498544945
Gauss-Legendre 9-point quadrature ∫₋₃⁺³ exp(x) dx ≈ 20.0357498548174
Gauss-Legendre 10-point quadrature ∫₋₃⁺³ exp(x) dx ≈ 20.0357498548198
Gauss-Legendre 20-point quadrature ∫₋₃⁺³ exp(x) dx ≈ 20.0357498548198