Copy sub two_sum ( @numbers, $sum ) {
die '@numbers is not sorted' unless [<=] @numbers;
my ( $i, $j ) = 0, @numbers.end;
while $i < $j {
given $sum <=> @numbers[$i,$j].sum {
when Order::More { $i += 1 }
when Order::Less { $j -= 1 }
when Order::Same { return $i, $j }
}
}
return ;
}
say two_sum ( 0, 2, 11, 19, 90 ), 21;
say two_sum ( 0, 2, 11, 19, 90 ), 25;
The two versions differ only in how one 'reads' the notional flow of processing: left-to-right versus right-to-left. Both return all pairs that sum to the target value, not just the first (e.g. for input of 0 2 10 11 19 90
would get indices 1/4 and 2/3).
Copy sub two-sum-lr (@a, $sum) {
# (((^@a X ^@a) Z=> (@a X+ @a)).grep($sum == *.value)>>.keys.map:{ .split(' ').sort.join(' ')}).unique
(
(
(^@a X ^@a) Z => (@a X+ @a)
). grep ($sum == *.value)>>. keys
. map :{ . split ( ' ' ). sort . join ( ' ' )}
).unique
}
sub two-sum-rl (@a, $sum) {
# unique map {.split(' ').sort.join(' ')}, keys %(grep {.value == $sum}, ((^@a X ^@a) Z=> (@a X+ @a)))
unique
map {. split ( ' ' ). sort . join ( ' ' )},
keys %(
grep {.value == $sum}, (
(^@a X ^@a) Z => (@a X+ @a)
)
)
}
my @a = <0 2 11 19 90>;
for 21, 25 {
say two-sum-rl(@a, $_);
say two-sum-lr(@a, $_);
}