Carmichael lambda function
# 20240228 Raku programming solution
use Prime::Factor;
sub phi(Int $p, Int $r) { return $p**($r - 1) * ($p - 1) }
sub CarmichaelLambda(Int $n) {
state %cache = 1 => 1, 2 => 1, 4 => 2;
sub CarmichaelHelper(Int $p, Int $r) {
my Int $n = $p ** $r;
return %cache{$n} if %cache{$n}:exists;
return %cache{$n} = $p > 2 ?? phi($p, $r) !! phi($p, $r - 1)
}
if $n < 1 { die "'n' must be a positive integer." }
return %cache{$n} if %cache{$n}:exists;
if ( my %pps = prime-factors($n).Bag ).elems == 1 {
my ($p, $r) = %pps.kv>>.Int;
return %cache{$n} = $p > 2 ?? phi($p, $r) !! phi($p, $r - 1)
}
return [lcm] %pps.kv.map: -> $k, $v { CarmichaelHelper($k.Int, $v) }
}
sub iteratedToOne($i is copy) {
my $k = 0;
while $i > 1 { $i = CarmichaelLambda($i) andthen $k++ }
return $k
}
say " n λ k";
say "----------";
for 1..25 -> $n {
printf "%2d %2d %2d\n", $n, CarmichaelLambda($n), iteratedToOne($n)
}
say "\nIterations to 1 i lambda(i)";
say "=====================================";
say " 0 1 1";
my ($maxI, $maxN) = 5e6, 10; # for N=15, takes around 47 minutes with an i5-10500T
my @found = True, |( False xx $maxN );
for 1 .. $maxI -> $i {
unless @found[ my $n = iteratedToOne($i) ] {
printf "%4d %18d %12d\n", $n, $i, CarmichaelLambda($i);
@found[$n] = True andthen ( last if $n == $maxN )
}
}
Same as Wren example .. and it is probably 30X times slower 😅
Last updated