Minkowski question-mark function
# 20201120 Raku programming solution
my \MAXITER = 151;
sub minkowski(\x) {
return x.floor + minkowski( x - x.floor ) if x > 1 || x < 0 ;
my $y = my $p = x.floor;
my ($q,$s,$d) = 1 xx 3;
my $r = $p + 1;
loop {
last if ( $y + ($d /= 2) == $y ) ||
( my $m = $p + $r) < 0 | $p < 0 ||
( my $n = $q + $s) < 0 ;
x < $m/$n ?? ( ($r,$s) = ($m, $n) ) !! ( $y += $d; ($p,$q) = ($m, $n) );
}
return $y + $d
}
sub minkowskiInv($x is copy) {
return $x.floor + minkowskiInv($x - $x.floor) if $x > 1 || $x < 0 ;
return $x if $x == 1 || $x == 0 ;
my @contFrac = 0;
my $i = my $curr = 0 ; my $count = 1;
loop {
$x *= 2;
if $curr == 0 {
if $x < 1 {
$count++
} else {
$i++;
@contFrac.append: 0;
@contFrac[$i-1] = $count;
($count,$curr) = 1,1;
$x--;
}
} else {
if $x > 1 {
$count++;
$x--;
} else {
$i++;
@contFrac.append: 0;
@contFrac[$i-1] = $count;
($count,$curr) = 1,0;
}
}
if $x == $x.floor { @contFrac[$i] = $count ; last }
last if $i == MAXITER;
}
my $ret = 1 / @contFrac[$i];
loop (my $j = $i - 1; $j ≥ 0; $j--) { $ret = @contFrac[$j] + 1/$ret }
return 1 / $ret
}
printf "%19.16f %19.16f\n", minkowski(0.5*(1 + 5.sqrt)), 5/3;
printf "%19.16f %19.16f\n", minkowskiInv(-5/9), (13.sqrt-7)/6;
printf "%19.16f %19.16f\n", minkowski(minkowskiInv(0.718281828)),
minkowskiInv(minkowski(0.1213141516171819))
Output:
1.6666666666696983 1.6666666666666667
-0.5657414540893351 -0.5657414540893352
0.7182818280000092 0.1213141516171819
Last updated