Sequence of primorial primes
constant @primes = |grep *.is-prime, 2..*;
constant @primorials = [\*] 1, @primes;
my @pp_indexes := |@primorials.pairs.map: {
.key if ( .value + any(1, -1) ).is-prime
};
say ~ @pp_indexes[ 0 ^.. 20 ]; # Skipping bogus first element.
Output:
1 2 3 4 5 6 11 13 24 66 68 75 167 171 172 287 310 352 384 457
Alternate implementation
merged from another removed draft task.
my @primorials = 1, |[\*] (2..*).grep: &is-prime;
sub abr ($_) { .chars < 41 ?? $_ !! .substr(0,20) ~ '..' ~ .substr(*-20) ~ " ({.chars} digits)" }
my $limit;
for ^∞ {
my \p = @primorials[$_];
++$limit and printf "%2d: %5s - 1 = %s\n", $limit, "p$_#", abr p -1 if (p -1).is-prime;
++$limit and printf "%2d: %5s + 1 = %s\n", $limit, "p$_#", abr p +1 if (p +1).is-prime;
exit if $limit >= 30
}
Output:
1: p0# + 1 = 2
2: p1# + 1 = 3
3: p2# - 1 = 5
4: p2# + 1 = 7
5: p3# - 1 = 29
6: p3# + 1 = 31
7: p4# + 1 = 211
8: p5# - 1 = 2309
9: p5# + 1 = 2311
10: p6# - 1 = 30029
11: p11# + 1 = 200560490131
12: p13# - 1 = 304250263527209
13: p24# - 1 = 23768741896345550770650537601358309
14: p66# - 1 = 19361386640700823163..29148240284399976569 (131 digits)
15: p68# - 1 = 21597045956102547214..98759003964186453789 (136 digits)
16: p75# + 1 = 17196201054584064334..62756822275663694111 (154 digits)
17: p167# - 1 = 19649288510530675457..35580823050358968029 (413 digits)
18: p171# + 1 = 20404068993016374194..29492908966644747931 (425 digits)
19: p172# + 1 = 20832554441869718052..12260054944287636531 (428 digits)
20: p287# - 1 = 71488723083486699645..63871022000761714929 (790 digits)
21: p310# - 1 = 40476351620665036743..10663664196050230069 (866 digits)
22: p352# - 1 = 13372477493552802137..21698973741675973189 (1007 digits)
23: p384# + 1 = 78244737296323701708..84011652643245393971 (1115 digits)
24: p457# + 1 = 68948124012218025568..25023568563926988371 (1368 digits)
25: p564# - 1 = 12039145942930719470..56788854266062940789 (1750 digits)
26: p590# - 1 = 19983712295113492764..61704122697617268869 (1844 digits)
27: p616# + 1 = 13195724337318102247..85805719764535513291 (1939 digits)
28: p620# - 1 = 57304682725550803084..81581766766846907409 (1953 digits)
29: p643# + 1 = 15034815029008301639..38987057002293989891 (2038 digits)
30: p849# - 1 = 11632076146197231553..78739544174329780009 (2811 digits)
PreviousSequence of primes by trial divisionNextSequence smallest number greater than previous term with exactly n divisors
Last updated