Duffinian numbers

use Prime::Factor;

my @duffinians = lazy (3..*).hyper.grep: { !.is-prime && $_ gcd .&divisors.sum == 1 };

put "First 50 Duffinian numbers:\n" ~
@duffinians[^50].batch(10)».fmt("%3d").join: "\n";

put "\nFirst 40 Duffinian triplets:\n" ~
    ((^∞).grep: -> $n { (@duffinians[$n] + 1 == @duffinians[$n + 1]) && (@duffinians[$n] + 2 == @duffinians[$n + 2]) })[^40]\
    .map( { "({@duffinians[$_ .. $_+2].join: ', '})" } ).batch(4)».fmt("%-24s").join: "\n";

Output:

First 50 Duffinian numbers:
  4   8   9  16  21  25  27  32  35  36
 39  49  50  55  57  63  64  65  75  77
 81  85  93  98 100 111 115 119 121 125
128 129 133 143 144 155 161 169 171 175
183 185 187 189 201 203 205 209 215 217

First 40 Duffinian triplets:
(63, 64, 65)             (323, 324, 325)          (511, 512, 513)          (721, 722, 723)         
(899, 900, 901)          (1443, 1444, 1445)       (2303, 2304, 2305)       (2449, 2450, 2451)      
(3599, 3600, 3601)       (3871, 3872, 3873)       (5183, 5184, 5185)       (5617, 5618, 5619)      
(6049, 6050, 6051)       (6399, 6400, 6401)       (8449, 8450, 8451)       (10081, 10082, 10083)   
(10403, 10404, 10405)    (11663, 11664, 11665)    (12481, 12482, 12483)    (13447, 13448, 13449)   
(13777, 13778, 13779)    (15841, 15842, 15843)    (17423, 17424, 17425)    (19043, 19044, 19045)   
(26911, 26912, 26913)    (30275, 30276, 30277)    (36863, 36864, 36865)    (42631, 42632, 42633)   
(46655, 46656, 46657)    (47523, 47524, 47525)    (53137, 53138, 53139)    (58563, 58564, 58565)   
(72961, 72962, 72963)    (76175, 76176, 76177)    (79523, 79524, 79525)    (84099, 84100, 84101)   
(86527, 86528, 86529)    (94177, 94178, 94179)    (108899, 108900, 108901) (121103, 121104, 121105)

Last updated