Geometric algebra
Here we write a simplified version of the Clifford module. It is very general as it is of infinite dimension and also contains an anti-euclidean basis @ē in addition to the euclidean basis @e.
class MultiVector is Mix {
subset Vector of ::?CLASS is export where *.grades.all == 1;
method narrow { self.keys.any > 0 ?? self !! (self{0} // 0) }
method grades { self.keys.map: *.base(2).comb.sum }
multi method new(Real $x) returns ::?CLASS { self.new-from-pairs: 0 => $x }
multi method new(Str $ where /^^e(\d+)$$/) { self.new-from-pairs: (1 +< (2*$0)) => 1 }
our @e is export = map { ::?CLASS.new: "e$_" }, ^Inf;
my sub order(UInt:D $i is copy, UInt:D $j) {
(state %){$i}{$j} //= do {
my $n = 0;
repeat {
$i +>= 1;
$n += [+] ($i +& $j).polymod(2 xx *);
} until $i == 0;
$n +& 1 ?? -1 !! 1;
}
}
sub infix:<·>(Vector $x, Vector $y) returns Real is export { (($x*$y + $y*$x)/2){0} }
multi infix:<+>(::?CLASS $A, ::?CLASS $B) returns ::?CLASS is export {
return ::?CLASS.new-from-pairs: |$A.pairs, |$B.pairs;
}
multi infix:<+>(Real $s, ::?CLASS $B) returns ::?CLASS is export {
samewith $B.new($s), $B
}
multi infix:<+>(::?CLASS $A, Real $s) returns ::?CLASS is export {
samewith $s, $A
}
multi infix:<*>(::?CLASS $, 0) is export { 0 }
multi infix:<*>(::?CLASS $A, 1) returns ::?CLASS is export { $A }
multi infix:<*>(::?CLASS $A, Real $s) returns ::?CLASS is export {
::?CLASS.new-from-pairs: $A.pairs.map({Pair.new: .key, $s*.value})
}
multi infix:<*>(::?CLASS $A, ::?CLASS $B) returns ::?CLASS is export {
::?CLASS.new-from-pairs: gather
for $A.pairs -> $a {
for $B.pairs -> $b {
take ($a.key +^ $b.key) => [*]
$a.value, $b.value,
order($a.key, $b.key),
|grep +*, (
|(1, -1) xx * Z*
($a.key +& $b.key).polymod(2 xx *)
)
}
}
}
multi infix:<**>(::?CLASS $ , 0) returns ::?CLASS is export { ::?CLASS.new: (0 => 1).Mix }
multi infix:<**>(::?CLASS $A, 1) returns ::?CLASS is export { $A }
multi infix:<**>(::?CLASS $A, 2) returns ::?CLASS is export { $A * $A }
multi infix:<**>(::?CLASS $A, UInt $n where $n %% 2) returns ::?CLASS is export { ($A ** ($n div 2)) ** 2 }
multi infix:<**>(::?CLASS $A, UInt $n) returns ::?CLASS is export { $A * ($A ** ($n div 2)) ** 2 }
multi infix:<*>(Real $s, ::?CLASS $A) returns ::?CLASS is export { $A * $s }
multi infix:</>(::?CLASS $A, Real $s) returns ::?CLASS is export { $A * (1/$s) }
multi prefix:<->(::?CLASS $A) returns ::?CLASS is export { return -1 * $A }
multi infix:<->(::?CLASS $A, ::?CLASS $B) returns ::?CLASS is export { $A + -$B }
multi infix:<->(::?CLASS $A, Real $s) returns ::?CLASS is export { $A + -$s }
multi infix:<->(Real $s, ::?CLASS $A) returns ::?CLASS is export { $s + -$A }
multi infix:<==>(::?CLASS $A, 0) returns Bool is export { $A.elems == 0 }
multi infix:<==>(::?CLASS $A, ::?CLASS $B) returns Bool is export { samewith $A - $B, 0 }
multi infix:<==>(Real $x, ::?CLASS $A) returns Bool is export { samewith $A, $x }
multi infix:<==>(::?CLASS $A, Real $x) returns Bool is export { samewith $A, $A.new($x); }
sub random is export {
[+] map {
::?CLASS.new-from-pairs: $_ => rand.round(.01)
}, ^32;
}
}
#########################################
## Test code to verify the solution: ##
#########################################
import MultiVector;
use Test;
constant N = 10;
plan 5;
subtest "Orthonormality", {
for ^N X ^N -> ($i, $j) {
my $s = $i == $j ?? 1 !! 0;
ok @e[$i]·@e[$j] == $s, "e$i·e$j = $s";
}
}
my ($a, $b, $c) = random() xx 3;
ok ($a*$b)*$c == $a*($b*$c), 'associativity';
ok $a*($b + $c) == $a*$b + $a*$c, 'left distributivity';
ok ($a + $b)*$c == $a*$c + $b*$c, 'right distributivity';
my @coeff = (.5 - rand) xx 5;
my $v = [+] @coeff Z* @e[^5];
ok ($v**2).narrow ~~ Real, 'contraction';
Last updated