Strassen's algorithm
Special thanks go to the module author, Fernando Santagata, on showing how to deal with a pass-by-value case.
# 20210126 Raku programming solution
use Math::Libgsl::Constants;
use Math::Libgsl::Matrix;
use Math::Libgsl::BLAS;
my @M;
sub SQM (\in) { # create custom sq matrix from CSV
die "Not a ■" if (my \L = in.split(/\,/)).sqrt != (my \size = L.sqrt.Int);
my Math::Libgsl::Matrix \M .= new: size, size;
for ^size Z L.rotor(size) -> ($i, @row) { M.set-row: $i, @row }
M
}
sub infix:<⊗>(\x,\y) { # custom multiplication
my Math::Libgsl::Matrix \z .= new: x.size1, x.size2;
dgemm(CblasNoTrans, CblasNoTrans, 1, x, y, 1, z);
z
}
sub infix:<⊕>(\x,\y) { # custom addition
my Math::Libgsl::Matrix \z .= new: x.size1, x.size2;
z.copy(x).add(y)
}
sub infix:<⊖>(\x,\y) { # custom subtraction
my Math::Libgsl::Matrix \z .= new: x.size1, x.size2;
z.copy(x).sub(y)
}
sub Strassen($A, $B) {
{ return $A ⊗ $B } if (my \n = $A.size1) == 1;
my Math::Libgsl::Matrix ($A11,$A12,$A21,$A22,$B11,$B12,$B21,$B22);
my Math::Libgsl::Matrix ($P1,$P2,$P3,$P4,$P5,$P6,$P7);
my Math::Libgsl::Matrix::View ($mv1,$mv2,$mv3,$mv4,$mv5,$mv6,$mv7,$mv8);
($mv1,$mv2,$mv3,$mv4,$mv5,$mv6,$mv7,$mv8)».=new ;
my \half = n div 2; # dimension of quarter submatrices
$A11 = $mv1.submatrix($A, 0,0, half,half); #
$A12 = $mv2.submatrix($A, 0,half, half,half); # create quarter views
$A21 = $mv3.submatrix($A, half,0, half,half); # of operand matrices
$A22 = $mv4.submatrix($A, half,half, half,half); #
$B11 = $mv5.submatrix($B, 0,0, half,half); # 11 12
$B12 = $mv6.submatrix($B, 0,half, half,half); #
$B21 = $mv7.submatrix($B, half,0, half,half); # 21 22
$B22 = $mv8.submatrix($B, half,half, half,half); #
$P1 = Strassen($A12 ⊖ $A22, $B21 ⊕ $B22);
$P2 = Strassen($A11 ⊕ $A22, $B11 ⊕ $B22);
$P3 = Strassen($A11 ⊖ $A21, $B11 ⊕ $B12);
$P4 = Strassen($A11 ⊕ $A12, $B22 );
$P5 = Strassen($A11, $B12 ⊖ $B22);
$P6 = Strassen($A22, $B21 ⊖ $B11);
$P7 = Strassen($A21 ⊕ $A22, $B11 );
my Math::Libgsl::Matrix $C .= new: n, n; # Build C from
my Math::Libgsl::Matrix::View ($mvC11,$mvC12,$mvC21,$mvC22); # C11 C12
($mvC11,$mvC12,$mvC21,$mvC22)».=new ; # C21 C22
given $mvC11.submatrix($C, 0,0, half,half) { .add: (($P1 ⊕ $P2) ⊖ $P4) ⊕ $P6 };
given $mvC12.submatrix($C, 0,half, half,half) { .add: $P4 ⊕ $P5 };
given $mvC21.submatrix($C, half,0, half,half) { .add: $P6 ⊕ $P7 };
given $mvC22.submatrix($C, half,half, half,half) { .add: (($P2 ⊖ $P3) ⊕ $P5) ⊖ $P7 };
$C
}
for $=pod[0].contents { next if /^\n$/ ; @M.append: SQM $_ }
for @M.rotor(2) {
my $product = @_[0] ⊗ @_[1];
# $product.get-row($_)».round(1).fmt('%2d').put for ^$product.size1;
say "Regular multiply:";
$product.get-row($_)».fmt('%.10g').put for ^$product.size1;
$product = Strassen @_[0], @_[1];
say "Strassen multiply:";
$product.get-row($_)».fmt('%.10g').put for ^$product.size1;
}
=begin code
1,2,3,4
5,6,7,8
1,1,1,1,2,4,8,16,3,9,27,81,4,16,64,256
4,-3,4/3,-1/4,-13/3,19/4,-7/3,11/24,3/2,-2,7/6,-1/4,-1/6,1/4,-1/6,1/24
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1
=end code
Output:
Regular multiply:
19 22
43 50
Strassen multiply:
19 22
43 50
Regular multiply:
1 0 -1.387778781e-16 -2.081668171e-17
1.33226763e-15 1 -4.440892099e-16 -1.110223025e-16
0 0 1 0
7.105427358e-15 0 7.105427358e-15 1
Strassen multiply:
1 5.684341886e-14 -2.664535259e-15 -1.110223025e-16
-1.136868377e-13 1 -7.105427358e-15 2.220446049e-15
0 0 1 5.684341886e-14
0 0 -2.273736754e-13 1
Regular multiply:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
Strassen multiply:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
Last updated