Factorial primes

sub postfix:<!> ($n) { constant @F = (1, 1, |[\*] 2..*); @F[$n] }
sub abr ($_) { .chars < 41 ?? $_ !! .substr(0,20) ~ '..' ~ .substr(*-20) ~ " ({.chars} digits)" }

my $limit;

for 1..* {
    my \f = .!;
    ++$limit and printf "%2d: %3d! - 1 = %s\n", $limit, $_, abr f -1 if (f -1).is-prime;
    ++$limit and printf "%2d: %3d! + 1 = %s\n", $limit, $_, abr f +1 if (f +1).is-prime;
    exit if $limit >= 30
}

Output:

 1:   1! + 1 = 2
 2:   2! + 1 = 3
 3:   3! - 1 = 5
 4:   3! + 1 = 7
 5:   4! - 1 = 23
 6:   6! - 1 = 719
 7:   7! - 1 = 5039
 8:  11! + 1 = 39916801
 9:  12! - 1 = 479001599
10:  14! - 1 = 87178291199
11:  27! + 1 = 10888869450418352160768000001
12:  30! - 1 = 265252859812191058636308479999999
13:  32! - 1 = 263130836933693530167218012159999999
14:  33! - 1 = 8683317618811886495518194401279999999
15:  37! + 1 = 13763753091226345046..79581580902400000001 (44 digits)
16:  38! - 1 = 52302261746660111176..24100074291199999999 (45 digits)
17:  41! + 1 = 33452526613163807108..40751665152000000001 (50 digits)
18:  73! + 1 = 44701154615126843408..03680000000000000001 (106 digits)
19:  77! + 1 = 14518309202828586963..48000000000000000001 (114 digits)
20:  94! - 1 = 10873661566567430802..99999999999999999999 (147 digits)
21: 116! + 1 = 33931086844518982011..00000000000000000001 (191 digits)
22: 154! + 1 = 30897696138473508879..00000000000000000001 (272 digits)
23: 166! - 1 = 90036917057784373664..99999999999999999999 (298 digits)
24: 320! + 1 = 21161033472192524829..00000000000000000001 (665 digits)
25: 324! - 1 = 22889974601791023211..99999999999999999999 (675 digits)
26: 340! + 1 = 51008644721037110809..00000000000000000001 (715 digits)
27: 379! - 1 = 24840307460964707050..99999999999999999999 (815 digits)
28: 399! + 1 = 16008630711655973815..00000000000000000001 (867 digits)
29: 427! + 1 = 29063471769607348411..00000000000000000001 (940 digits)
30: 469! - 1 = 67718096668149510900..99999999999999999999 (1051 digits)

Last updated