Total circles area
This subdivides the outer rectangle repeatedly into subrectangles, and classifies them into wet, dry, or unknown. The knowns are summed to provide an inner bound and an outer bound, while the unknowns are further subdivided. The estimate is the average of the outer bound and the inner bound. Not the simplest algorithm, but converges fairly rapidly because it can treat large areas sparsely, saving the fine subdivisions for the circle boundaries. The number of unknown rectangles roughly doubles each pass, but the area of those unknowns is about half.
class Point {
has Real $.x;
has Real $.y;
has Int $!cbits; # bitmap of circle membership
method cbits { $!cbits //= set_cbits(self) }
method gist { $!x ~ "\t" ~ $!y }
}
multi infix:<to>(Point $p1, Point $p2) {
sqrt ($p1.x - $p2.x) ** 2 + ($p1.y - $p2.y) ** 2;
}
multi infix:<mid>(Point $p1, Point $p2) {
Point.new(x => ($p1.x + $p2.x) / 2, y => ($p1.y + $p2.y) / 2);
}
class Circle {
has Point $.center;
has Real $.radius;
has Point $.north = Point.new(x => $!center.x, y => $!center.y + $!radius);
has Point $.west = Point.new(x => $!center.x - $!radius, y => $!center.y);
has Point $.south = Point.new(x => $!center.x, y => $!center.y - $!radius);
has Point $.east = Point.new(x => $!center.x + $!radius, y => $!center.y);
multi method contains(Circle $c) { $!center to $c.center <= $!radius - $c.radius }
multi method contains(Point $p) { $!center to $p <= $!radius }
method gist { $!center.gist ~ "\t" ~ $.radius }
}
class Rect {
has Point $.nw;
has Point $.ne;
has Point $.sw;
has Point $.se;
method diag { $!ne to $!se }
method area { ($!ne.x - $!nw.x) * ($!nw.y - $!sw.y) }
method contains(Point $p) {
$!nw.x < $p.x < $!ne.x and
$!sw.y < $p.y < $!nw.y;
}
}
my @rawcircles = sort -*.radius,
map -> $x, $y, $radius { Circle.new(:center(Point.new(:$x, :$y)), :$radius) },
<
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
>».Num;
# remove redundant circles
my @circles;
while @rawcircles {
my $c = @rawcircles.shift;
next if @circles.any.contains($c);
push @circles, $c;
}
sub set_cbits(Point $p) {
my $cbits = 0;
for @circles Z (1,2,4...*) -> ($c, $b) {
$cbits += $b if $c.contains($p);
}
$cbits;
}
my $xmin = min @circles.map: { .center.x - .radius }
my $xmax = max @circles.map: { .center.x + .radius }
my $ymin = min @circles.map: { .center.y - .radius }
my $ymax = max @circles.map: { .center.y + .radius }
my $min-radius = @circles[*-1].radius;
my $outer-rect = Rect.new:
nw => Point.new(x => $xmin, y => $ymax),
ne => Point.new(x => $xmax, y => $ymax),
sw => Point.new(x => $xmin, y => $ymin),
se => Point.new(x => $xmax, y => $ymin);
my $outer-area = $outer-rect.area;
my @unknowns = $outer-rect;
my $known-dry = 0e0;
my $known-wet = 0e0;
my $div = 1;
# divide current rects each into four rects, analyze each
sub divide(@old) {
$div *= 2;
# rects too small to hold circle?
my $smallish = @old[0].diag < $min-radius;
my @unk;
for @old {
my $center = .nw mid .se;
my $north = .nw mid .ne;
my $south = .sw mid .se;
my $west = .nw mid .sw;
my $east = .ne mid .se;
for Rect.new(nw => .nw, ne => $north, sw => $west, se => $center),
Rect.new(nw => $north, ne => .ne, sw => $center, se => $east),
Rect.new(nw => $west, ne => $center, sw => .sw, se => $south),
Rect.new(nw => $center, ne => $east, sw => $south, se => .se)
{
my @bits = .nw.cbits, .ne.cbits, .sw.cbits, .se.cbits;
# if all 4 points wet by same circle, guaranteed wet
if [+&] @bits {
$known-wet += .area;
next;
}
# if all 4 corners are dry, must check further
if not [+|] @bits and $smallish {
# check that no circle bulges into this rect
my $ok = True;
for @circles -> $c {
if .contains($c.east) or .contains($c.west) or
.contains($c.north) or .contains($c.south)
{
$ok = False;
last;
}
}
if $ok {
$known-dry += .area;
next;
}
}
push @unk, $_; # dunno yet
}
}
@unk;
}
my $delta = 0.001;
repeat until my $diff < $delta {
@unknowns = divide(@unknowns);
$diff = $outer-area - $known-dry - $known-wet;
say 'div: ', $div.fmt('%-5d'),
' unk: ', (+@unknowns).fmt('%-6d'),
' est: ', ($known-wet + $diff/2).fmt('%9.6f'),
' wet: ', $known-wet.fmt('%9.6f'),
' dry: ', ($outer-area - $known-dry).fmt('%9.6f'),
' diff: ', $diff.fmt('%9.6f'),
' error: ', ($diff - @unknowns * @unknowns[0].area).fmt('%e');
}
Output:
div: 2 unk: 4 est: 14.607153 wet: 0.000000 dry: 29.214306 diff: 29.214306 error: 0.000000e+000
div: 4 unk: 15 est: 15.520100 wet: 1.825894 dry: 29.214306 diff: 27.388411 error: 0.000000e+000
div: 8 unk: 39 est: 20.313072 wet: 11.411838 dry: 29.214306 diff: 17.802467 error: 7.105427e-015
div: 16 unk: 107 est: 23.108972 wet: 17.003639 dry: 29.214306 diff: 12.210667 error: -1.065814e-014
div: 32 unk: 142 est: 21.368667 wet: 19.343066 dry: 23.394268 diff: 4.051203 error: 8.881784e-014
div: 64 unk: 290 est: 21.504182 wet: 20.469985 dry: 22.538380 diff: 2.068396 error: 1.771916e-013
div: 128 unk: 582 est: 21.534495 wet: 21.015613 dry: 22.053377 diff: 1.037764 error: -3.175238e-013
div: 256 unk: 1169 est: 21.557898 wet: 21.297343 dry: 21.818454 diff: 0.521111 error: -2.501332e-013
div: 512 unk: 2347 est: 21.563415 wet: 21.432636 dry: 21.694194 diff: 0.261558 error: -1.046996e-012
div: 1024 unk: 4700 est: 21.564111 wet: 21.498638 dry: 21.629584 diff: 0.130946 error: 1.481315e-013
div: 2048 unk: 9407 est: 21.564804 wet: 21.532043 dry: 21.597565 diff: 0.065522 error: 1.781700e-012
div: 4096 unk: 18818 est: 21.564876 wet: 21.548492 dry: 21.581260 diff: 0.032768 error: 1.098372e-011
div: 8192 unk: 37648 est: 21.564992 wet: 21.556797 dry: 21.573187 diff: 0.016389 error: -1.413968e-011
div: 16384 unk: 75301 est: 21.565017 wet: 21.560920 dry: 21.569115 diff: 0.008195 error: -7.683898e-011
div: 32768 unk: 150599 est: 21.565031 wet: 21.562982 dry: 21.567080 diff: 0.004097 error: -1.247991e-010
div: 65536 unk: 301203 est: 21.565035 wet: 21.564010 dry: 21.566059 diff: 0.002049 error: -2.830591e-010
div: 131072 unk: 602411 est: 21.565036 wet: 21.564524 dry: 21.565548 diff: 0.001024 error: -1.607121e-010
Here the "diff" is calculated by subtracting the known wet and dry areas from the total area, and the "error" is the difference between that and the sum of the areas of the unknown blocks, to give a rough idea of how much floating point roundoff error we've accumulated.
Last updated