Continued fraction convergents
# 20240210 Raku programming solution
sub convergents(Real $x is copy, Int $maxcount) {
my @components = gather for ^$maxcount {
my $fpart = $x - take $x.Int;
$fpart == 0 ?? ( last ) !! ( $x = 1 / $fpart )
}
my ($numa, $denoma, $numb, $denomb) = 1, 0, @components[0], 1;
return [ Rat.new($numb, $denomb) ].append: gather for @components[1..*] -> $comp {
( $numa, $denoma, $numb , $denomb )
= $numb, $denomb, $numa + $comp * $numb, $denoma + $comp * $denomb;
take Rat.new($numb, $denomb);
}
}
my @tests = [ "415/93", 415/93, "649/200", 649/200, "sqrt(2)", sqrt(2),
"sqrt(5)", sqrt(5), "golden ratio", (sqrt(5) + 1) / 2 ];
say "The continued fraction convergents for the following (maximum 8 terms) are:";
for @tests -> $s, $x {
say $s.fmt('%15s') ~ " = { convergents($x, 8).map: *.nude.join('/') } ";
}
Output:
The continued fraction convergents for the following (maximum 8 terms) are:
415/93 = 4/1 9/2 58/13 415/93
649/200 = 3/1 13/4 159/49 649/200
sqrt(2) = 1/1 3/2 7/5 17/12 41/29 99/70 239/169 577/408
sqrt(5) = 2/1 9/4 38/17 161/72 682/305 2889/1292 12238/5473 51841/23184
golden ratio = 1/1 2/1 3/2 5/3 8/5 13/8 21/13 34/21
You may Attempt This Online!
PreviousGmatrix ng continued fraction n1 continued fraction n2NextConvert decimal number to rational
Last updated