(For a more reasonable test, reduce the orders-of-magnitude range in the "Primes count" line from 2..7 to 2..5)
sub comma { $^i.flip.comb(3).join(',').flip }
sub schnitzel (\Radda, \radDA = 0) {
Radda.is-prime ?? !Radda !! ?radDA ?? Radda
!! sum flat (2 .. Radda.sqrt.floor).map: -> \RAdda {
my \RADDA = Radda div RAdda;
next if RADDA * RAdda !== Radda;
RAdda !== RADDA ?? (RAdda, RADDA) !! RADDA
}
}
my \chowder = cache (1..Inf).hyper(:8degree).grep( !*.&schnitzel: 'panini' );
my \mung-daal = lazy gather for chowder -> \panini {
my \gazpacho = 2**panini - 1;
take gazpacho * 2**(panini - 1) unless schnitzel gazpacho, panini;
}
printf "chowla(%2d) = %2d\n", $_, .&schnitzel for 1..37;
say '';
printf "Count of primes up to %10s: %s\n", comma(10**$_),
comma chowder.first( * > 10**$_, :k) for 2..7;
say "\nPerfect numbers less than 35,000,000";
.&comma.say for mung-daal[^5];
chowla( 1) = 0
chowla( 2) = 0
chowla( 3) = 0
chowla( 4) = 2
chowla( 5) = 0
chowla( 6) = 5
chowla( 7) = 0
chowla( 8) = 6
chowla( 9) = 3
chowla(10) = 7
chowla(11) = 0
chowla(12) = 15
chowla(13) = 0
chowla(14) = 9
chowla(15) = 8
chowla(16) = 14
chowla(17) = 0
chowla(18) = 20
chowla(19) = 0
chowla(20) = 21
chowla(21) = 10
chowla(22) = 13
chowla(23) = 0
chowla(24) = 35
chowla(25) = 5
chowla(26) = 15
chowla(27) = 12
chowla(28) = 27
chowla(29) = 0
chowla(30) = 41
chowla(31) = 0
chowla(32) = 30
chowla(33) = 14
chowla(34) = 19
chowla(35) = 12
chowla(36) = 54
chowla(37) = 0
Count of primes up to 100: 25
Count of primes up to 1,000: 168
Count of primes up to 10,000: 1,229
Count of primes up to 100,000: 9,592
Count of primes up to 1,000,000: 78,498
Count of primes up to 10,000,000: 664,579
Perfect numbers less than 35,000,000
6
28
496
8,128
33,550,336