Determinant and permanent
Uses the permutations generator from the Permutations by swapping task. This implementation is naive and brute-force (slow) but exact.
sub insert ($x, @xs) { ([flat @xs[0 ..^ $_], $x, @xs[$_ .. *]] for 0 .. @xs) }
sub order ($sg, @xs) { $sg > 0 ?? @xs !! @xs.reverse }
multi σ_permutations ([]) { [] => 1 }
multi σ_permutations ([$x, *@xs]) {
σ_permutations(@xs).map({ |order($_.value, insert($x, $_.key)) }) Z=> |(1,-1) xx *
}
sub m_arith ( @a, $op ) {
note "Not a square matrix" and return
if [||] map { @a.elems cmp @a[$_].elems }, ^@a;
sum σ_permutations([^@a]).race.map: {
my $permutation = .key;
my $term = $op eq 'perm' ?? 1 !! .value;
for $permutation.kv -> $i, $j { $term *= @a[$i][$j] };
$term
}
}
######### helper subs #########
sub hilbert-matrix (\h) {[(1..h).map(-> \n {[(n..^n+h).map: {(1/$_).FatRat}]})]}
sub rat-or-int ($num) {
return $num unless $num ~~ Rat|FatRat;
return $num.narrow if $num.narrow.WHAT ~~ Int;
$num.nude.join: '/';
}
sub say-it ($message, @array) {
my $max;
@array.map: {$max max= max $_».&rat-or-int.comb(/\S+/)».chars};
say "\n$message";
$_».&rat-or-int.fmt(" %{$max}s").put for @array;
}
########### Testing ###########
my @tests = (
[
[ 1, 2 ],
[ 3, 4 ]
],
[
[ 1, 2, 3, 4 ],
[ 4, 5, 6, 7 ],
[ 7, 8, 9, 10 ],
[ 10, 11, 12, 13 ]
],
hilbert-matrix 7
);
for @tests -> @matrix {
say-it 'Matrix:', @matrix;
say "Determinant:\t", rat-or-int @matrix.&m_arith: <det>;
say "Permanent: \t", rat-or-int @matrix.&m_arith: <perm>;
say '-' x 40;
}Output
Last updated
Was this helpful?