Powerful numbers
Raku has no handy pre-made nth integer root routine so has the same problem as Go with needing a slight "fudge factor" in the nth root calculation.
sub super (\x) { x.trans([<0123456789>.comb] => [<⁰¹²³⁴⁵⁶⁷⁸⁹>.comb]) }
sub is-square-free (Int \n) {
constant @p = ^100 .map: { next unless .is-prime; .² };
for @p -> \p { return False if n %% p }
True
}
sub powerfuls (\n, \k, \enumerate = False) {
my @powerful;
p(1, 2*k - 1);
sub p (\m, \r) {
if r < k {
enumerate ?? @powerful.push(m) !! ++@powerful[m - 1 ?? (m - 1).chars !! 0];
return
}
for 1 .. ((n / m) ** (1/r) + .0001).Int -> \v {
if r > k {
next unless is-square-free(v);
next unless m gcd v == 1;
}
p(m * v ** r, r - 1)
}
}
@powerful;
}
put "Count and first and last five enumerated n-powerful numbers in 10ⁿ:";
for 2..10 -> \k {
my @powerful = sort powerfuls(10**k, k, True);
printf "%2d %2s-powerful numbers <= 10%-2s: %s ... %s\n", +@powerful, k, super(k),
@powerful.head(5).join(", "), @powerful.tail(5).join(", ");
}
put "\nCounts in each order of magnitude:";
my $top = 9;
for 2..10 -> \k {
printf "%2s-powerful numbers <= 10ⁿ (where 0 <= n <= %d): ", k, $top+k;
quietly say join ', ', [\+] powerfuls(10**($top + k), k);
}Output:
Last updated
Was this helpful?