Carmichael 3 strong pseudoprimes
func forprimes(a, b, callback) {
for (a = (a-1 -> next_prime); a <= b; a.next_prime!) {
callback(a)
}
}
forprimes(3, 61, func(p) {
for h3 in (2 ..^ p) {
var ph3 = (p + h3)
for d in (1 ..^ ph3) {
((-p * p) % h3) != (d % h3) && next
((p-1) * ph3) % d && next
var q = 1+((p-1) * ph3 / d)
q.is_prime || next
var r = 1+((p*q - 1)/h3)
r.is_prime || next
(q*r) % (p-1) == 1 || next
printf("%2d x %5d x %5d = %s\n",p,q,r, p*q*r)
}
}
})
Output:
3 x 11 x 17 = 561
5 x 29 x 73 = 10585
5 x 17 x 29 = 2465
5 x 13 x 17 = 1105
... full output is 69 lines ...
61 x 661 x 2521 = 101649241
61 x 271 x 571 = 9439201
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441
Last updated