Pell's equation
func solve_pell(n) {
var x = n.isqrt
var y = x
var z = 1
var r = 2*x
var (e1, e2) = (1, 0)
var (f1, f2) = (0, 1)
loop {
y = (r*z - y)
z = floor((n - y*y) / z)
r = floor((x + y) / z)
(e1, e2) = (e2, r*e2 + e1)
(f1, f2) = (f2, r*f2 + f1)
var A = (e2 + x*f2)
var B = f2
if (A**2 - n*B**2 == 1) {
return (A, B)
}
}
}
for n in [61, 109, 181, 277] {
var (x, y) = solve_pell(n)
printf("x^2 - %3d*y^2 = 1 for x = %-21s and y = %s\n", n, x, y)
}
Output:
x^2 - 61*y^2 = 1 for x = 1766319049 and y = 226153980
x^2 - 109*y^2 = 1 for x = 158070671986249 and y = 15140424455100
x^2 - 181*y^2 = 1 for x = 2469645423824185801 and y = 183567298683461940
x^2 - 277*y^2 = 1 for x = 159150073798980475849 and y = 9562401173878027020
Last updated