Square form factorization
const multipliers = divisors(3*5*7*11).grep { _ > 1 }
func sff(N) {
N.is_prime && return 1 # n is prime
N.is_square && return N.isqrt # n is square
multipliers.each {|k|
var P0 = isqrt(k*N) # P[0]=floor(sqrt(N)
var Q0 = 1 # Q[0]=1
var Q = (k*N - P0*P0) # Q[1]=N-P[0]^2 & Q[i]
var P1 = P0 # P[i-1] = P[0]
var Q1 = Q0 # Q[i-1] = Q[0]
var P = 0 # P[i]
var Qn = 0 # P[i+1]
var b = 0 # b[i]
while (!Q.is_square) { # until Q[i] is a perfect square
b = idiv(isqrt(k*N) + P1, Q) # floor(floor(sqrt(N+P[i-1])/Q[i])
P = (b*Q - P1) # P[i]=b*Q[i]-P[i-1]
Qn = (Q1 + b*(P1 - P)) # Q[i+1]=Q[i-1]+b(P[i-1]-P[i])
(Q1, Q, P1) = (Q, Qn, P)
}
b = idiv(isqrt(k*N) + P, Q) # b=floor((floor(sqrt(N)+P[i])/Q[0])
P1 = (b*Q0 - P) # P[i-1]=b*Q[0]-P[i]
Q = (k*N - P1*P1)/Q0 # Q[1]=(N-P[0]^2)/Q[0] & Q[i]
Q1 = Q0 # Q[i-1] = Q[0]
loop {
b = idiv(isqrt(k*N) + P1, Q) # b=floor(floor(sqrt(N)+P[i-1])/Q[i])
P = (b*Q - P1) # P[i]=b*Q[i]-P[i-1]
Qn = (Q1 + b*(P1 - P)) # Q[i+1]=Q[i-1]+b(P[i-1]-P[i])
break if (P == P1) # until P[i+1]=P[i]
(Q1, Q, P1) = (Q, Qn, P)
}
with (gcd(N,P)) {|g|
return g if g.is_ntf(N)
}
}
return 0
}
[ 11111, 2501, 12851, 13289, 75301, 120787, 967009, 997417, 4558849, 7091569, 13290059,
42854447, 223553581, 2027651281, 11111111111, 100895598169, 1002742628021, 60012462237239,
287129523414791, 11111111111111111, 384307168202281507, 1000000000000000127, 9007199254740931,
922337203685477563, 314159265358979323, 1152921505680588799, 658812288346769681,
419244183493398773, 1537228672809128917
].each {|n|
var v = sff(n)
if (v == 0) { say "The number #{n} is not factored." }
elsif (v == 1) { say "The number #{n} is a prime." }
else { say "#{n} = #{[n/v, v].sort.join(' * ')}" }
}Output:
Last updated
Was this helpful?