Thiele's interpolation formula
func thiele(x, y) {
var ρ = {|i| [y[i]]*(y.len-i) }.map(^y)
for i in ^(ρ.end) {
ρ[i][1] = ((x[i] - x[i+1]) / (ρ[i][0] - ρ[i+1][0]))
}
for i (2 .. ρ.end) {
for j (0 .. ρ.end-i) {
ρ[j][i] = (((x[j]-x[j+i]) / (ρ[j][i-1]-ρ[j+1][i-1])) + ρ[j+1][i-2])
}
}
var ρ0 = ρ[0]
func t(xin) {
var a = 0
for i (ρ0.len ^.. 2) {
a = ((xin - x[i-1]) / (ρ0[i] - ρ0[i-2] + a))
}
y[0] + ((xin-x[0]) / (ρ0[1]+a))
}
return t
}
# task 1: build 32 row trig table
var xVal = {|k| k * 0.05 }.map(^32)
var tSin = xVal.map { .sin }
var tCos = xVal.map { .cos }
var tTan = xVal.map { .tan }
# task 2: define inverses
var iSin = thiele(tSin, xVal)
var iCos = thiele(tCos, xVal)
var iTan = thiele(tTan, xVal)
# task 3: demonstrate identities
say 6*iSin(0.5)
say 3*iCos(0.5)
say 4*iTan(1)
Output:
3.14159265358979323846438729976818601771260734312
3.14159265358979323846157620314930763214337987744
3.14159265358979323846264318595256260456200366896
Last updated