Vogel's approximation method
var costs = :(
W => :(A => 16, B => 16, C => 13, D => 22, E => 17),
X => :(A => 14, B => 14, C => 13, D => 19, E => 15),
Y => :(A => 19, B => 19, C => 20, D => 23, E => 50),
Z => :(A => 50, B => 12, C => 50, D => 15, E => 11)
)
var demand = :(A => 30, B => 20, C => 70, D => 30, E => 60)
var supply = :(W => 50, X => 60, Y => 50, Z => 50)
var cols = demand.keys.sort
var (:res, :g)
supply.each {|x| g{x} = costs{x}.keys.sort_by{|g| costs{x}{g} }}
demand.each {|x| g{x} = costs .keys.sort_by{|g| costs{g}{x} }}
while (g) {
var d = demand.collect {|x|
[x, var z = costs{g{x}[0]}{x}, g{x}[1] ? costs{g{x}[1]}{x}-z : z]
}
var s = supply.collect {|x|
[x, var z = costs{x}{g{x}[0]}, g{x}[1] ? costs{x}{g{x}[1]}-z : z]
}
d.grep! { .[2] == d.max_by{ .[2] }[2] }.min_by! { .[1] }
s.grep! { .[2] == s.max_by{ .[2] }[2] }.min_by! { .[1] }
var (t,f) = (d[2] == s[2] ? ((s[1], d[1])) : ((d[2], s[2])))
(d,s) = (t > f ? ((d[0], g{d[0]}[0])) : ((g{s[0]}[0],s[0])))
var v = (supply{s} `min` demand{d})
res{s}{d} := 0 += v
demand{d} -= v
if (demand{d} == 0) {
supply.grep {|_,n| n != 0 }.each {|x| g{x}.delete(d) }
g.delete(d)
demand.delete(d)
}
supply{s} -= v
if (supply{s} == 0) {
demand.grep {|_,n| n != 0 }.each {|x| g{x}.delete(s) }
g.delete(s)
supply.delete(s)
}
}
say("\t", cols.join("\t"))
var cost = 0
costs.keys.sort.each { |g|
print(g, "\t")
cols.each { |n|
if (defined(var y = res{g}{n})) {
print(y)
cost += (y * costs{g}{n})
}
print("\t")
}
print("\n")
}
say "\n\nTotal Cost = #{cost}"
Output:
A B C D E
W 50
X 30 20 10
Y 20 30
Z 50
Total Cost = 3100
Last updated