Diversity prediction theorem
func avg_error(m, v) {
v.map { (_ - m)**2 }.sum / v.len
}
func diversity_calc(truth, pred) {
var ae = avg_error(truth, pred)
var cp = pred.sum/pred.len
var ce = (cp - truth)**2
var pd = avg_error(cp, pred)
return [ae, ce, pd]
}
func diversity_format(stats) {
gather {
for t,v in (%w(average-error crowd-error diversity) ~Z stats) {
take(("%13s" % t) + ':' + ('%7.3f' % v))
}
}
}
diversity_format(diversity_calc(49, [48, 47, 51])).each{.say}
diversity_format(diversity_calc(49, [48, 47, 51, 42])).each{.say}
Output:
average-error: 3.000
crowd-error: 0.111
diversity: 2.889
average-error: 14.500
crowd-error: 4.000
diversity: 10.500
Last updated