Stirling numbers of the first kind
func S1(n, k) { # unsigned Stirling numbers of the first kind
stirling(n, k).abs
}
const r = (0..12)
var triangle = r.map {|n| 0..n -> map {|k| S1(n, k) } }
var widths = r.map {|n| r.map {|k| (triangle[k][n] \\ 0).len }.max }
say ('n\k ', r.map {|n| "%*s" % (widths[n], n) }.join(' '))
r.each {|n|
var str = ('%-3s ' % n)
str += triangle[n].map_kv {|k,v| "%*s" % (widths[k], v) }.join(' ')
say str
}
with (100) {|n|
say "\nMaximum value from the S1(#{n}, *) row:"
say { S1(n, _) }.map(^n).max
}
Output:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1
6 0 120 274 225 85 15 1
7 0 720 1764 1624 735 175 21 1
8 0 5040 13068 13132 6769 1960 322 28 1
9 0 40320 109584 118124 67284 22449 4536 546 36 1
10 0 362880 1026576 1172700 723680 269325 63273 9450 870 45 1
11 0 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55 1
12 0 39916800 120543840 150917976 105258076 45995730 13339535 2637558 357423 32670 1925 66 1
Maximum value from the S1(100, *) row:
19710908747055261109287881673376044669240511161402863823515728791076863288440277983854056472903481625299174865860036734731122707870406148096000000000000000000
Alternatively, the S1(n,k) function can be defined as:
func S1((0), (0)) { 1 }
func S1(_, (0)) { 0 }
func S1((0), _) { 0 }
func S1(n, k) is cached { S1(n-1, k-1) + (n-1)*S1(n-1, k) }
Last updated